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I* Introduction 

Probabilistic processing is a met.iod of processing the output 

date of en array of seismometers with the etm of detecting earthquake 

or bouerground nucleer blest signets in the presence of embient seismic 

noise* This method is based on the essumption that the array output 

is Gaussian with mean zero and known coverience matrix 0. or O^, depending 

on the ebsence or presence of signal. 

The decision regarding presence or ebsence of the signal i% therefore, 

made equivelent to testing the hypothesis that the observed dete is from 

a Gaussien population with coveriance matrix H. with the simple alternetive 

hypothesis thet the coveriance matrix Is 0~. 

The univeriete situetlon is: e single value x Is observed from a 

Gaussien populetlon with meen zero. It must be decided whether x is 

2   2 
more representative of a Gaussien population with variance o. or o« . 

The two density functions ere 

1   /SrTo, 
1   exp (.x2/aof) 

u*) 1    exp (-x2/aö!) 

(1) 

/2no 

Vx) 

'■ '■ • "•", 
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where ot > 01 . Clearly It is more likely that x is from Mx) if 

|x| < c and more likely that x is from fp(x) if |x| > c. So the method 

of processing in this case reduces to Just squaring the observation x 

and comparing the result with a fixed constant. 

If • vector x of dimension k is observed, then the two density 

functions become: 

V'x) ■ (2rTrk/2 inj"172 exp (-xT P^1 x/2) 

f0(x) - (2n)-
k/2 |0or

1/2 exp (-xT CL1  x/2). 
(2) 

0 

These equations can be compared to find the set of vectors x for which 

f^x) > f2(x). Thus If 

xTCr)"1-Og1)x> c In (If^l/lf^l) (3) 

then f2(x) > ^(x). 

The test statistic x (0* • 0' )x must, therefore, be computed from 

the data. The detailed calculation of the test statistic in terms of 

array data is given in the following section. 

A more rigorous development of the test statistic based on Bayes 

Theorem has been presented In a proceeding special reoort. 

r • 

e 
II. Calculation of the Test Statistic 

A. Notation 

The data from an array of seismometers can be represented by 

the matrix X where the rows correspond to the seismometers and the columns 

D 
L 
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to the time sampled date 

Xll X12 * * ' X1N 

'21  22 ^N 

XM1 XM2 * ' * XMN 

Thus, x.. is the observation from seismometer I at the time j. 

The elements of the matrix X can be "strung out" into a single vector 

y in the following manner: 
T  / T  T      T 
y ■ vx2' 2* * * * XN 

where x, ■ (x.., x0., • • • # xM,)* This vector y is now the vector of 

observations from which the test statistic (equation 3) will be computed. 

Since the mean of y Is assumed to be zero, the covariance matrix of y is 

just   

n yy 

and the dimension of P    is MN by MN since there are MN elements in the 
V     —T T —T vector y.    let ^II.II+I ■ x.x.    if j > I and rn.ji+ ^ ■ XjX.  if j < i and write 

so that 

yy 

*A *l*l X1X3 * ' 
, . x1xN 

X2X1 
• 

X2X2 
XgX« • ( . . x2xN 

_XNX1 
. . x xT ' ' N NJ 

n 

ri  r2 • • * rN 
r2    ri •  •  • Vl 

J 
where each submatrix rj ft an M by M matrix. 

(^) 



T- 

A. B. 

-U- 

B. Inverse of RN 

The inverse of (T cen be obtained from the solutions of the two 

systems of equations 

.N 

«N 'A 
H 

t 0 
■ 

9 

0 
S    / 

Partition R In the fashion 

and 

r**-1 

t BT    !0 

N 
• 

f0) 
e 

• 
e m 

• 
• 

$ 

• 0 
P.' \v 

I 
\   S 

(5) 

then 

(R")-1 

b      T-J   [-V,A     I 

where the dot indicates a matrix of zeros and 

A - (A"-1)"1 

61 - 0 - B'AB. 

From equation {3)  the last N columns of (R )  are 

r 
^'w1 

^'N'*
1 

^MSI ' "! r*--' ^- ,11 i.jj^iiiiij -~ i ■■"^■| "■«I" 
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so that 

N  V  N; 

rN,/pi\-i 

^    N j 

'...:'> 

J > 

Since (P,;)"1 
follows that 

ABö^B1^ « 

N 

A 

W .ri 
N 

(6) 

Now partition 

RN. 
J.L..tT.. 

c'l    R"-1 

to get 

(•.,,)-1 

p 1 
| 

• 
■♦• 

[•! A 
1                   " 

,6^    :     .6-1CTA" 

-ACÖg1]       ACÖ^C^ 

where ö~    - 0 - C AC.    As before,   it follows that 

AM'VA - 
^2 (PN) 

-i 1 

v.^ 

(7) 

Denote by BJJ the IJth M by M submatrlx of the inverse of RH, From (6) and (7) 

f iinMiniei»"!!!'! ■HgP ' 
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the following equations can be written: 

•ij  ,lj ^^-i*! ^N'  ^-j^l (6) 

I, j • 1, . . ., N-l 

I, j - 1, . . ., N-l 

IJ      Now by subtracting (8) from (9), the basic iterative formula of equation (10) 

Is obtained 

and the entire inverse matrix can be c«nerated starting with the first 
I* 

M columns of the Inverse which is the first column of the sl'.'s available 
1*1 ' J 
(v      from equation (5). 

C. The Quadratic Processor 

Suppose this matrix X - (x^ . . . , xT) is observed. Then the 

test statistic 
mm 

Hy}) - y,Cyj 

can be evaluated for I ■ 1, ... f T-N+l where 

y, - (xJ# ... . , x^j^) 

A program to perform this calculation has been written. In addition, 

an Integrated, souared multichannel Winner filter output is available as 

an option In the quadratic processor program to give a comparison between the 

two detection methods. 

n 

-j i ■M.^».-—^iw^wfpwi-»-"»    i  i ■ ■!■■■■■  PI—WWMI—■ 
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0. Multichannel Time Series Data Generation 

It is desired to generate multichannel data x. • (x-., x^.j..., x ) 

with the covariance matrix R . Let Fj i « 2, ..., N and P satisfy the 

r 
i 

system of equations (5)« Suppose y. is a supply of vectors satisfying 

Ey. » 0 

EyjYj • !• 

Then x. will be generated by the following equation 

x. - -(I^)1 xN1 - . . . -(rJj)T x|-N + Cj   (11) 

for i > N where x-s e,, xg ^ Cp, . . . , xN , » ««n» The method of 

determining the c. is 

where HH « PN. The reason for this is that e. must satisfy 

E£|€I *  PN- 
Determination of an H satisfying the above is accomplished by requiring 

that H be lower triangular. 

The x data generated by Equation 11 has the correlation matrix R 

of Equation 5> This is established by multiplying Equation 11 on the 

right by x . and then taking the expected value. 

This equation was given incorrectly in Section IV of the Array 

Research Semiannual Report No. 2. 
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E.     Eigenva'ues 

The test statistic  is 

P(x) - xr (O"1 - P"1)« (12) 

where P. and P are Toeplitz matrices. Let the observation vector x be 

transformed to z by the NM by NM nonsingular transformation x = Sz such 

that 

i P(x) = zVCP"1 - ?'£) Sz = zTDz      (13) 

r       where 0 is diagonal. Then the computation of the quadratic form is reduced 

to filtering operations, followed by a suw atlon of the squared outputs. A 

I       especially important transformation, diagonalizing both O^1, Qg1 simultaneously, 

^       exists since A - 0^  and B - O^1 are positive definite.2 This transformation 

i       Is found by solving the following generalized eigenvalue problem. 

r The solution for X's satisfying 

|A - XB| - 0 (1U) 

is called the generalized eigenvalue problem. The corresponding set of 

vectors x such that 
Ax « XBx (15) 

are the generalized eigenvectors. The matrix M whose columns consist of 

these eigenvectors normalized fj that xTBx ■ 1 can then be shown to satisfy 

MTAM » A 

HTBM - I (Xö) 

where A Is a diagonal matrix with elenents X. 
— 

Thus it the S of equation (13) is taken to ba M, then the diagonal 

matrix D satisfies 

0 . A - I. (17) 

—P ! I  I  IH^II  XW-f■   '       **m*"V .        mm'»» .H-iil.LL.   UBH 
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;il. Theoretical Evaluation 

A. Quadratic Processor 

It Is desirable to determine operating parameters for the quadratic 

detection function 

P(x) xT (n^1 - n^jx. (18) 

Two useful parameters are the false alarm rate a and the failure to detect 

rate 8. These parameters are defined in terms of the distribution of P(x) 

when x Is from 0.,  say f,, and when x Is from 0 , say f , The cover lance 

matrix fl^ will represent noise and 0^ will represent signal plus noise. The 

parameters a, 0 can now be expressed by 

(19) 

a - Prob ^ P(x) > c I x € I \ 

e - Prob ^ P(x) < c I x € II} 

and are the probabilities of the two types of error which can be made. The 

other situations 

P(x) < c I x € I 

P(x) > c | x € TI 

represent correct decisions by the method of probablllsMc processing. 

Suppose the data x Is transformed by the matrix M of section E. 

Then 

x - My 

(20) 

P(x) - yV (nj1 - n^My 

- yT (A - I)y 

(2M 

*  3S 
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where A Is a diagonal matrix with elements X. satisfying the generalized 

eigenvalue equation 

n^1 - f^1 x | - o. (2?) 

It follows from the definitions of 0. and (L that X>1. Anr'cher equivalent 

expression for 22 Is 

| f^ nj1 - XI | - 0 (23) 

so that 

k"? I - I'^fsl • " xi • (21.) 

Thus the constant c of Equation 3 can be written 

c * In n X - I In X  . 
I  '  1    ' 

(25) 

I 

c 
!, 

[ 

If we Insert f^ » N and f^ « S ♦ N Into Equation 23 it follows 

that 

I SN"1 - (x - r I I - 0. (26) 

-1 
Since S and N are positive definite, the roots of SN  are positive and 

therefore X.>1. 

The distribution of y, if x « II, is multlvariate normal with mean 

•IT   -1 
zero and covarlance matrix H  (L H  «I* It follows from Equation 21 that 

P(x) has the same distribution as 

P 

(27) 

tw    m      ^T-e-^- * i 



•11. 

where r) s X| - 1 and the ^C/t\ are Independent chl-square random variables 

each with 1 degree of freedom. 

If x € I, then y is multivariate normal with covariance M~ P, M' 

A • Now transform y to a by 

y - A'1/2 a (28) 

so that covariance of a Is I and 

P(x) - yT (A - I)y - aT A"1/2 (A - l)A"1/2 . 

- .T (I - A"1), 

so that P(x) again has the distribution as the expression (27) with 

(29) 

n, - i - x;1 
(30) 

This result could also be established by defining the columns of 

M' to b« the eigen vectors corresponding to the eigenvalues X* satisfying 

where 

' ^ '^ "l1 I -0 ' 

M'T n^1 M' - i 

M^n^1 M' - A' 

and if x « M'y , then 

i 

-i 

P(x) - y (I - AOy • Now, when x c I, y Is multivariate 

normal with mean zero and covariance matrix I so that P(x) Is distributed 

as Equation 27 with T^-l-X« but X'-lA yielding the same result 

as before. 

fj. 

-*-  ?■■'. i 
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The exact distribution of Equation 27 is not known in closed form. Several 

3 
approximations have been considered In the literature. 

We wi11 be content to assume that Equation 27 is approximately distributed 

as i>%  where 6, v are determined by setting the mean and variance of 6TL equal 

the mean and variance of Equation 27« This results in 

6 - a2/2ht 

(31) 

where 

2 2 
v ■ 2ii /a 

P 

I 
P 

|i = 

(32) 

-2I  r^ 
l«l ' 

It Is possible to arrive at the above approximation by applying a 

k 
result of Patnaik ,  which relates a non-central chl-square variable to a 

constant multiple of a chi-square 

^T = 6V? . (33) 

to each term of Equation 27; theiv use the addition theorem for non-central chi 

square values* and finally apply Patnalk's result to the summed non-central 

chi-squares* The advantage of the above approach Is In transmitting the 

known qualities of the approximation (33) to the approximation given by 

Equations 31 and 32* 

The above results can be applied to the pair of Equetlons (19) 

to obtain 

^-P- 11 11— 

.   r-    --.   r:   it-   % 
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a - Prob [y? > c/6 I ^ - ! . \m^ 

f 2 .        '\ &0 
8 - Prob {■C< c/6 | Tij -Xj - 1 7 

where v and 6 «re defined In terms of the T). values by Equations 31 and 

Note that both the approximate and true means and variances are 

given by 

P 

I1-- Ml -X|) 
I 1-1    ' 

P 

H  - MX - 1) 
II 1-1 ' 

P (35) 

0^-2 Ml-X')2 
x 1-1    ' 

P 

L (x. - ir O2 -2 „^ 
11 1-1   ' 

and that since each term of iij  Is less than the corresponding term of (i-- 

2    2 
it follows that 11-- > |i- , OJJ > a   as expected* 

It is not necessaiy to calculate the individual X's to apply the 

approximation or to obtain the parameters given by Equations 35. From 

section E, 

C^1 M - Og1 M A (36) 

so that 

M"1 Oj Oj1 M - A (37) 



il 

0 

i 

i L 

I 

! 

1 
1 

-i^- 

and 

jl Ax, ■ tr A - tr "   "' f^ ti?      . (38) 
if 

Also 

Z X^ « tr AA - tr M"1 Og f^1 (^ C^1 M 

tr f^ n^1 % n^1 (39) 

and it foilCMS that 

Ix; - tr ^n"1 

[ Ix^-trc^^^n"1    . 

I      Thus the approximation parameters v, 6, and the population means and 

variances can be written in terms of the original correlation matrices 

and their inverses» 

B. Squared Hulticha.mel Wiener Filter 

The optimum Wiener coefficients to estimate the signal at a 

selected seismometer are given by 

W 

2 

where 

npW-Y (Ul) 

(U * covariance matrix of signal plus noise (NM by NH) 

W » optimum filter coefficients (NM by l) 

Y > selected signal correlations (NM by 1). 

The original array data is then filtered 

y - 2 V'" .    - WTx (42) 
^  1-1   *  ' 

;'-fe|ilaJr ""^It,- -_ ■' 
_- v_ 
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where 

K] 
w W2 

w 

and the resulting time trace y is the optimum (mean square error) 

estimate of the signal trace* It is desirable to consider the output 

o 
squared y , as a competitor of P(x) for signal detection. We therefore 

2 
want thi  istribution of yt when x e I and when x c II. Since y is 

a linear combination of normal random variables, y is normal with mean 

zero and variance 

2  T 
(T - W* n W. 

x 0*) 

Thus yt has the same distribution a« 0 ^ . Since W - n"1 y,  O2 can 

be written 

3   T -1   -i 
(T - yJ Og1 nx fig

1 Y . (Wf) 

If x e II, then 0 > 0. and 

2   T -1     T <r - Y n2 Y • Y w to) 

whereas 

o - YT n"1 c^ n'1 Y 0*6) 

when x f I. The quantity Y W li tImply related to the mean square 

error which is output In the multichannel filter prograit. which determines 

the filter coefficients W. 

S* i| 
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IV.  Discussion of Processing Results 

Correlation matrices for an annular ring noise model (3-^ km/sec) 

and a solid disk (6 km/sec) signal model were generated by an existing 

program and used as input data to the sequence of programs discussed in 

Section II. The frequency spectrum for both signal and noi~e was left 

whitb. The center and three outer seismometer locations of the triangular 

WMSO array were used thereby generating 4 by U correlation submatrices 

for 25 lags. 

1 km 

[ 
[ 

Geometry of the WMSO Array Locations Used. 

The 10 lag matrices for both noise and signal plus noise were inverted and the 

P,r matrices for each were written on CPT to be used In the data generation 

program. The random error values c are different (independently generated) 

for each of the 6 traces shown in Figures 1 and 2. The difference of the 2 

inverses was also written on CPT to be used in the program which evaluates the 

quadratic processor. A plot of the quadratic processor output as a function of 

liiigiiiiy»!» LiJjipii 

Ha iiJi^ 
•'"Wili^JL» H.y  IM ■    i 

i  ftp ^KjJiM 
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time is given in figure 1.    The left and right portions are quadratic 

processor output for dat< generated with the noise correlation matrix 

end signal plus noise correlation matrix respectively. The horizontal 

line separating the two curves is drawn at the amplitude c of Section II. 

The mean and variance (average sum of squares of deviations about the 

mean) calculated from the two plots of figure 1 and corresponding theoretical 

values are 

fIL = 16.0 

s£ «= 11.8 

m« = kk,k 

s2 * 2rM 

Hj = i7.o 

Oj « 16.0 

HJJ = ^.i 

Ojj = 227.»* 

The values of M- and a very accurately predict the calculated 

2 
voiues m and s . These results show that the effectiveness of the 

quadratic processor may be conveniently determined from L.« correlation 

matrices on a theoretical basis. 

There are ** points of the UÖO noise points greater than c  and 8 

points of the Ho signal plus noise points less than c  (ignoring the 

first 20 points of the second trace due to an unfortunate end effect). 

The measured values of a, 0 are approximately .006 and .018 respectively. 

The theoretical values of a, ß are given by 

2 a = Prob AcL > 50} = .01^ 

P = Prob^7 < 10} < .lU . 

Exact values are unavailable for %  6 due to inadequate "jc   tables. 
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The same models, using 25 lags, were also evaluated and the results 

are summarized in Table 1. The quadratic processor output is also plotted 

in Figure 1. 

The theoretical values for a,  ß for 25   lags are approximately 

a = Prob ^0 > 120 * .0013 

P « Prob 7%k < 20.k   = .005 

where the normal approximation has been used. 

From the evaluation of Equations ^5 and k6,   it was found that 

for 25 lags the squared four channel Wiener filter is distributed as 

.65 ^ if x € II 

.18 T^ if x € I. 

The filters were determined and applied to data generated from populations 

I and II. These results are plotted in Figure 2. The sample means of 

I and II are .72 and .19. 

No natural critical level c is available as for the quadratic 

detector. For comparison suppose we consider a = B. Then the critical 

level is approximately .15 and a = ß = .36. 

It should be noted in the above comparison that no summation 

over the squared output has been made. The reason for this is that 

(25) • CO of the original data points wi<I produce one output point by 

either of the two detection methods. If one sums over a gate length other 

than 1 for the Wiener trace, then more data is used and it would only 

be fair to allow smoothing for the quadratic processor. 

: _...- ^ v y ^7;'% .jimm 
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One argument against the above is that summing for one of the 

two methods may be mere beneficial than for the other. The "whiteness" 

of the Wiener outputs suggests smoothing is of greater Importance to the 

Wiener process than to the quadratic process. The results of Figures 

.1 and 2 for 25 lags were smoothed over a gate length of 10 and 25 

points and the results shown :n Figures 3 and h. 

i i 
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C = 25.3 

10 LAGS 

C=67.4 

25 LAGS B S + N 

Figure 1. Evaluation of the Quadratic Processor for S = 8 km/sec Solid 
Disk Signal, N = 3-4 km/sec Annular Ring Noise, 4 Channels 
(Center and Outer Locations of the WMSO Array) 
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SIGNAL  + NOISE 

B 
Figure 2.   Wiener Filter, Sum and Square Process — 4 Channels, 25 Lags 
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C*67.4 

SIGNAL + NOISE 

: SMOOTHED   OVER    10   POINTS 

C*67.4 

SIGNAL + NOISE 

H SMOOTHED   OVER   25   POINTS 

B 
Figure 3.    Results of Figure 1 Smoothed Over 10,   25 Points, 

Quadr   .ic Processor,  25 Lags 
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F OVER   10 POINTS 

SIGNAL + NOISE 

R OVER   25   POINTS 

SIGNAL + NOISE 

B 
Figure 4.    Results of Figure 2 Smoothed Over 10,   25 Points, 

Wiener Filter Sum and Square Process 
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Table 1. QUANTITATIVE RESULTS FOR 25 LAGS 

II 

m U3.5Ö 336.28 

.2 97.73 1570.06 

V- »♦2.76 1U8.90 

o2 U7.20 1020.17 

mi J5.^ XIO' ■13 16.81* xio17 

C25 
■ -      67.U5 

trace 
^^ 

1 >     2U8.90 

trace n,^1 
1 57.2U 

trace 92^ fi2 <? -   1V17.96 

trace .n^1 n,^1 36.08 

I 
[ 

[ 

I 

q^p 
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